Dispersive and Dissipative Errors in the DPG Method with Scaled Norms for Helmholtz Equation

نویسندگان

  • Jayadeep Gopalakrishnan
  • Ignacio Muga
  • Nicole Olivares
چکیده

This paper studies the discontinuous Petrov–Galerkin (DPG) method, where the test space is normed by a modified graph norm. The modification scales one of the terms in the graph norm by an arbitrary positive scaling parameter. The main finding is that as the parameter approaches zero, better results are obtained, under some circumstances, when the method is applied to the Helmholtz equation. The main tool used is a dispersion analysis on the multiple interacting stencils that form the DPG method. The analysis shows that the discrete wavenumbers of the method are complex, explaining the numerically observed artificial dissipation in the computed wave approximations. Since the DPG method is a nonstandard least-squares Galerkin method, its performance is compared with a standard least-squares method having a similar stencil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation

The paper presents an iterative algorithm for studying a nonlinear shallow-water wave equation. The equation is written as an evolution equation, involving only first-order spatial derivatives, coupled with the Helmholtz equation. We propose a two-step iterative method that first solves the evolution equation by the implicit midpoint rule and then solves the Helmholtz equation using a three-poi...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Sound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length

   In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...

متن کامل

Wavenumber Explicit Analysis for a DPG Method for the Multidimensional Helmholtz Equation

We study the properties of a novel discontinuous Petrov Galerkin (DPG) method for acoustic wave propagation. The method yields Hermitian positive definite matrices and has good pre-asymptotic stability properties. Numerically, we find that the method exhibits negligible phase errors (otherwise known as pollution errors) even in the lowest order case. Theoretically, we are able to prove error es...

متن کامل

Numerical solution of the Helmholtz equation with high wavenumbers

This paper investigates the pollution effect, and explores the feasibility of a local spectral method, the discrete singular convolution (DSC) algorithm for solving the Helmholtz equation with high wavenumbers. Fourier analysis is employed to study the dispersive error of the DSC algorithm. Our analysis of dispersive errors indicates that the DSC algorithm yields a dispersion vanishing scheme. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014